
428  |  2013 ICMC idea  |  POSTERS 429  |  2013 ICMC idea  |  POSTERS

Another observation from the data and graphs is that test
scores show lower achievement than projects in general.
This is somewhat obvious because when a student writes
a program, the system tells them pretty quickly when it
is wrong. Consider Loops: this was assessed early and
was generally low but then again on the low on the final
exam. Obviously students used loops throughout the
semester but in a programming context students may
have shifted being able to do it right the first time or
spending a little more time debugging. On the exam
where they could not let the lack of a functioning
program tell them they made a mistake they may have
been at a disadvantage from an objective evaluation
standpoint. But, students who really "got it" did well on
the tests as well.

5. DISCUSSION

The unique strength of our course is that we teach and
provide digital arts students with tools they can use for
serious projects and future work, but we also provide
them knowledge and example code that demonstrates
particular computer science and DSP concepts. The
example code is parsimonious (due to the nature of
ChucK), and is heavily commented so the students feel
free to re-use and modify it. Each exercise and example
the students learn, program, and modify demonstrates an
important concept, algorithm, mechanism, etc.

Finally, teaching our courses in ChucK, which is free
and open-source, gives art students the promise that they
can use these in the future without prohibitive personal
cost. Unlike engineering students, art students cannot be
assured they will have employers that can afford
expensive professional versions of software such as
MATLAB, Max/MSP/Jitter, MAYA, etc. ChucK has a
growing base of users, academic and also in production
coding (a number of popular iPhone/iPad Apps are
written at least in part in ChucK).

We have learned much, and plan to modify and assess
our curriculum as we continue to offer the course(s) in
the future. The course will be offered in the future, and
to a wider population within the art school. The goal is
to have all art majors take this course sequence, to offer
the course to other institutions for adoption and/or
modification, and to potentially offer a version of it
online. All course materials and other supplemental
materials are available at http://www.chucku.org.

6. ACKNOWLEDGEMENTS

This material is based upon work supported by the
National Science Foundation under Grant No. 1140336.
Any opinions, findings, and conclusions or
recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of
the National Science Foundation. The authors also wish
to thank Ge Wang and Spencer Salazar for their help
and advise, and continuing to hack ChucK to make it
more useful for all. We also thank Dan Trueman, Ge
Wang, Scott Smallwood, and Rebecca Fiebrink for their
PLOrk/SLOrk curriculum materials. We would also like

to thanks Sarah Nelson for her administrative support.
We would also like to thank the Teaching Assistants
Colin Honigman, Raphael Arar, Jon He, & Kameron
Christopher

7. REFERENCES

[1] G. Wang and P. R. Cook, “ChucK: A concurrent,
on-the-fly audio programming language,” in
Proceedings of the International Computer Music
Conference, 2003, pp. 219–226.

[2] D. Trueman, P. Cook, S. Smallwood, and G. Wang,
“Plork: The princeton laptop orchestra, year 1,” in
Proceedings of the international computer music
conference, 2006, pp. 443–450.

[3] G. Wang, D. Trueman, S. Smallwood, and P. R.
Cook, “The laptop orchestra as classroom,”
Computer Music Journal, vol. 32, no. 1, pp. 26–37,
2008.

[4] S. Dexter, “Teaching applet programming to non-
majors-virtually,” in Frontiers in Education
Conference, 2000. FIE 2000. 30th Annual, 2000,
vol. 2, p. S2D–6.

[5] J. Maloney, M. Resnick, N. Rusk, B. Silverman,
and E. Eastmond, “The scratch programming
language and environment,” ACM Transactions on
Computing Education (TOCE), vol. 10, no. 4, p. 16,
2010.

[6] W. Feurzeig, “An Introductory LOGO Teaching
Sequence: LOGO Teaching Sequence on Logic -
LOGO Reference Manual.” ERIC Clearinghouse,
1970.

[7] S. Hambrusch, C. Hoffmann, J. T. Korb, M.
Haugan, and A. L. Hosking, “A multidisciplinary
approach towards computational thinking for
science majors,” in ACM SIGCSE Bulletin, 2009,
vol. 41, pp. 183–187.

[8] J. M. Zelle, “Python as a First Language,”
presented at the Proceedings of the 13th Annual
Midwest Computer Conference, 1999.

[9] A. Forte and Guzdial, M., “, A. M. . Motivation and
non-majors in computer science: Indentifying
discrete audiences for introductory courses,” IEEE
Transactions on Education, vol. 48, no. 2, pp. 248–
253, 2005.

[10] B. Dorn, A. E. Tew, and M. Guzdial, “Introductory
computing construct use in an end-user
programming community,” in Visual Languages
and Human-Centric Computing, 2007. VL/HCC
2007. IEEE Symposium on, 2007, pp. 27–32.

[11] Head, L., “NSF 1044734, Music, Signals &
Systems: Non-disciplined Education in a Multi-
Campus Setting.” National Science Foundation,
Oct-2011.

[12] Steiglitz, K. and Lansky, P., “EIN: A Signal
Processing Scratchpad,” Computer Music Journal,
vol. 19, no. 3, pp. 18–25, 1995.

[13] Heines, J., “NSF 1118435, Computational Thinking
through Computing and Music.” National Science
Foundation, Aug-2011.

PROBABILISTIC PREDICTION OF RHYTHMIC
CHARACTERISTICS IN MARKOV CHAIN-BASED

MELODIC SEQUENCES

Bongjun Kim and Woon Seung Yeo
Audio & Interactive Media (AIM) Lab

Graduate School of Culture Technology, KAIST
Deajeon, 305-701, Korea Republic

iambongjun@gmail.com, woony@kaist.edu

ABSTRACT

Markov chain models have been widely used for
algorithmic composition and machine improvisation. In
this paper, we introduce a probabilistic prediction model
of rhythmic characteristics of Markov chain-based note
sequences. For this purpose, we propose an algorithm to
generate a revised Markov chain model and calculate the
onset probabilities of notes at each onset position in one
measure. As an application of this algorithm, we present
an interactive improvisation system which uses a
customized syncopation index as an input parameter and
allows the user to control the level of syncopation and
rhythmic tension in real-time.

1. INTRODUCTION

Auto-generation of music with mathematical algorithms
such as neural networks, genetic algorithms, generative
grammars and cellular automata, has been researched for
several decades. Markov chains are also widely used in
algorithmic composition and machine improvisation
system because it is computationally cheap to learn the
style of existing music and imitate the music with simple
probabilistic calculation [5, 7]. Markov chains imitate a
style of sequence of musical events such as notes and
chords with transition probabilities between events. This
probability-based learning and creation enable us to
generate more creative musical outcomes [1, 10].

Despite of the advantages of Markov chains, they are
not suited for interactive control. Overcoming this
drawback, Pachet et al. suggested methods to control the
generation of event sequences from Markov chain
models for interactive applications considering
constraints for user inputs. But they focused on only
pitch, not rhythmic factors [8, 9].

This paper addresses the issue of controlling rhythm
of note sequences generated from a first-order Markov
chain which is the simplest type. Our approach is to
predict the onset probabilities of musical notes and to
select the initial state of the Markov chains depending
on the probabilities. As an application of the algorithm,
we present an interactive improvisation system built in
Max/MSP where users can control the amount of
syncopation of the rhythm in real-time.

2. RHYTHM GENERATION AND
ANALYSIS WITH MARKOV MODELS

Figure 1 illustrates an example of a simple first-order
Markov chain for rhythm generation, which can be
derived from the user’s input melodies or sample pieces.
Each node represents the duration of a note, and
transition probabilities between nodes show their mutual
dependencies. For example, a quarter note is followed
by an eighth note with the probability 0.5 and, in turn, an
eighth note is followed by an eighth rest with the
probability 0.3. The outgoing probabilities from each
state must sum to 1.

0.2 0.3

0.3

0.5

0.50.20.2

0.3
0.3 0.7

0.3

0.2

Figure 1. An example of a first-order Markov
chain for rhythm generation

The Markov chain model is used not only to imitate a
style of existing pieces and generate melodies, but also
to calculate probabilities of future events using transition
matrices, which means that we can predict the possibility
of occurrence of the n th note from the initial note [4].
For example, if each state (or node) of a Markov chain
denote pitch, we can calculate the probability that the
pitch of the third note will be E or C. However, if it is a
rhythm model involving the duration of notes shown in
Figure 1, it is hard to predict the rhythmic characteristics
per bar. This is because the onset position of each note
is affected by the durations of their preceding notes.
Figure 2 illustrates the problem. Depending on the
combination of the first two events (either notes or rests)
the third event is in a different position. With the simple
Markov chain model in Figure 1, we can only calculate

430  |  2013 ICMC idea  |  POSTERS 431  |  2013 ICMC idea  |  POSTERS

the probability that the third event is an eighth note, not
the probability that it occurs at a specific position. But
we need the latter to predict rhythmic characteristics in
one measure.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

: 3rd event

1

2

3

Figure 2. The onset positions of the third event
vary with the durations of preceding events.

3. THE ALGORITHM

3.1. Revised Markov Chain Model

In order to calculate the probability of each state at a
specific position in a bar, the simple Markov chain
above needs to be revised. Figure 3 illustrates the
structure of a new Markov chain model modified from
the original one in Figure 1. To generate this model, the
number of “unit pulses” in one bar needs to be defined.
Here, we divide one measure into 8 beat pulses and,
assuming 4/4 meter, the duration of a unit pulse
corresponds to an eighth note. Compared to Figure 1,
nodes whose duration is longer than one unit pulse are
divided into multiple nodes so that each state can take
only the unit duration, an eighth note.

(N1, 1) (N2, 1)

(R1, 1) (N3, 1)

0.2 0.3

0.3

0.5

0.5 0.20.2

0.3

0.3 0.7

0.3

0.2

(N2, 2)

(N3, 2)(N3, 3)

1

1

1

Figure 3. Revised Markov chain model (modified
from Figure 1).

Each state is denoted as (a, b): the first element a
shows the type and duration of the event (e.g., Nd or Rd,
where N: note, R: rest, and d: duration) and the second
element b means the “counter” parameter ranging from 1
to the duration of the event. For example, the dotted
quarter note has three states, (N3, 1), (N3, 2), and (N3, 3).
The transition probabilities to newly added nodes (gray-
colored in Figure 3) are set to 1 because these events
always occur after the first state of each event.

3.2. Onset Probability

The purpose of the revised Markov chain model is to
derive state probabilities of each onset position in one
measure from a simple Markov chain model. The state
probabilities π(k) are calculated using equation (1).

 T πkπ k 1)0()((1)

In the equation, k denotes time step indicating onset
positions from 1 to 8 and π(0) means initial state. T is a
transition matrix modified from the transition matrix of
simple Markov chains in Figure 1 by a simple procedure.
Firstly, the new transition matrix is initialized as a zero-
matrix. If the size of previous transition matrix is (N ×
N), the size of revised transition matrix is (d1 + ···+ dN)
×(d1 + ··· + dN), where dN is the duration of note or rest
N. Their transition probabilities, S’ are derived using
equation (2) and (3), where S denotes transition
probabilities of the simple Markov model.

1111')1,(),,(ababa d,...,b N,,...,a for S (2)

,...Nj ,...N,i for S S ijjdi a
11')1,(),,((3)

Now, we can calculate onset probabilities at each
position in one measure. The probability that note a
occurs at position k can be calculated by following
equation (4).

resta for kπkp aa 1,)()((4)

Finally, the onset probability at position k, Ponset(k) is
derived from equation (5).

,)()(
1

1, resta for kπkp
tN

Na
aonset

 (5)

where t is the total number of notes.
Figure 4 is onset probability distribution which allows

us to predict how the rhythm will be generated from the
Markov chain in Figure 1. We also know that the
probabilities change depending on the initial events.

4. APPLICATION

As an application of the algorithm, we developed an
interactive improvisation system where users can control
the amount of syncopation of the rhythm in real-time.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

On
se

t P
ro

ba
bi

lit
y

Onset Position

Initial State: Eighth Note
Initial State: Quarter Note
Initial State: Eighth Rest

Figure 4. Onset probability distribution in one measure
with different initial states.

4.1. Syncopation Index

Syncopation is one of the rhythmic characteristics which
produce rhythmic tension. Many researchers have
explored the method of measures and perception of
syncopation [3], and it has been used as user’s input
parameter of interactive music system [11].

0 -3 -2 -3 -1 -3 -2 -3Weight

1 2 3 4 5 6 7 8
Position

18
Pair

Syncopation Syncopation

Syncopation
Index -2 – (-3) -1 – (-3) + = 3

Figure 5. A rhythm tree and syncopation index in
4/4 meter [6].

In order to calculate syncopation value with our
probabilistic model, we follow the Longuet-Higgins and
Lee’s definition of syncopation [2, 6]. They defined
metrical tree having weight values of zero or less to
calculate syncopation index (figure 5). The weights
describe how much the metrical positions contribute to
the measure’s rhythmic feeling. According to their
papers, syncopations occur when a rest (or tied note) is
preceded by a note of lesser weight, and the difference
in weights of rest and note means each syncopation
value. Thus the sum of all syncopation values is the
syncopation index for the rhythm. For example, in
Figure 5, the rhythm has two syncopations. The first
syncopation value is 1, and the second one is 2. So the
syncopation index for the rhythm equals to 3 (more
detailed algorithm can be found in [2]).

We use this concept to probabilistically predict
syncopation index of note sequences to be generated
from Markov chains. In our model, comparing onset
probabilities for each pair, we assign a rest at the

position which has less onset probability, and another
position is assigned by a note. For example, given the
onset probabilities in figure 4, when an initial event is an
eighth note, a note at onset position 2 and a rest at
position 3 are assigned. Thus, using the same calculation
method shown in figure 5, its syncopation index can be
predicted as 3.

As shown in this example, we can predict
probabilistic syncopation index with different initial
states, which means that syncopation indices can be
user’s input parameters in Markov chain-based
improvisation system.

4.2. Max/MSP External Object

The algorithm was implemented in one Max/MSP
external object named MC_OnsetProb. The object
receives a list of sets of the transition matrix of simple
Markov chain model, and it converts them to the
transition matrix for revised Markov chain model. It also
calculates the onset probabilities at each pulse and
syncopation index. The output of this external object is
a list of sets of onset probability, syncopation index, and
related initial state.

4.3. Real-time Improvisation System

The system overview of Markov chain-based
improvisation system is shown in Figure 6, which
consists of three modules, (1) Markov Chain Analysis,
(2) Syncopation Index Calculation, and (3) Melody
Generation.

MIDI Input
Melody

Rhythm
Model

Pitch
Model

Markov Chain Anlaysis
(First-order)

Pitch
Generation

Rhythm
Generation

Melody generation

Onset Probability
Calculation

Revised Markov
Chain Model

 Syncopation Index
Calculation

User Input:
Syncopation

Index

Syncopation
Index Set

MIDI Output
Melody

Quantization

Figure 6. System overview of improvisation
system

430  |  2013 ICMC idea  |  POSTERS 431  |  2013 ICMC idea  |  POSTERS

the probability that the third event is an eighth note, not
the probability that it occurs at a specific position. But
we need the latter to predict rhythmic characteristics in
one measure.

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

: 3rd event

1

2

3

Figure 2. The onset positions of the third event
vary with the durations of preceding events.

3. THE ALGORITHM

3.1. Revised Markov Chain Model

In order to calculate the probability of each state at a
specific position in a bar, the simple Markov chain
above needs to be revised. Figure 3 illustrates the
structure of a new Markov chain model modified from
the original one in Figure 1. To generate this model, the
number of “unit pulses” in one bar needs to be defined.
Here, we divide one measure into 8 beat pulses and,
assuming 4/4 meter, the duration of a unit pulse
corresponds to an eighth note. Compared to Figure 1,
nodes whose duration is longer than one unit pulse are
divided into multiple nodes so that each state can take
only the unit duration, an eighth note.

(N1, 1) (N2, 1)

(R1, 1) (N3, 1)

0.2 0.3

0.3

0.5

0.5 0.20.2

0.3

0.3 0.7

0.3

0.2

(N2, 2)

(N3, 2)(N3, 3)

1

1

1

Figure 3. Revised Markov chain model (modified
from Figure 1).

Each state is denoted as (a, b): the first element a
shows the type and duration of the event (e.g., Nd or Rd,
where N: note, R: rest, and d: duration) and the second
element b means the “counter” parameter ranging from 1
to the duration of the event. For example, the dotted
quarter note has three states, (N3, 1), (N3, 2), and (N3, 3).
The transition probabilities to newly added nodes (gray-
colored in Figure 3) are set to 1 because these events
always occur after the first state of each event.

3.2. Onset Probability

The purpose of the revised Markov chain model is to
derive state probabilities of each onset position in one
measure from a simple Markov chain model. The state
probabilities π(k) are calculated using equation (1).

 T πkπ k 1)0()((1)

In the equation, k denotes time step indicating onset
positions from 1 to 8 and π(0) means initial state. T is a
transition matrix modified from the transition matrix of
simple Markov chains in Figure 1 by a simple procedure.
Firstly, the new transition matrix is initialized as a zero-
matrix. If the size of previous transition matrix is (N ×
N), the size of revised transition matrix is (d1 + ···+ dN)
×(d1 + ··· + dN), where dN is the duration of note or rest
N. Their transition probabilities, S’ are derived using
equation (2) and (3), where S denotes transition
probabilities of the simple Markov model.

1111')1,(),,(ababa d,...,b N,,...,a for S (2)

,...Nj ,...N,i for S S ijjdi a
11')1,(),,((3)

Now, we can calculate onset probabilities at each
position in one measure. The probability that note a
occurs at position k can be calculated by following
equation (4).

resta for kπkp aa 1,)()((4)

Finally, the onset probability at position k, Ponset(k) is
derived from equation (5).

,)()(
1

1, resta for kπkp
tN

Na
aonset

 (5)

where t is the total number of notes.
Figure 4 is onset probability distribution which allows

us to predict how the rhythm will be generated from the
Markov chain in Figure 1. We also know that the
probabilities change depending on the initial events.

4. APPLICATION

As an application of the algorithm, we developed an
interactive improvisation system where users can control
the amount of syncopation of the rhythm in real-time.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

On
se

t P
ro

ba
bi

lit
y

Onset Position

Initial State: Eighth Note
Initial State: Quarter Note
Initial State: Eighth Rest

Figure 4. Onset probability distribution in one measure
with different initial states.

4.1. Syncopation Index

Syncopation is one of the rhythmic characteristics which
produce rhythmic tension. Many researchers have
explored the method of measures and perception of
syncopation [3], and it has been used as user’s input
parameter of interactive music system [11].

0 -3 -2 -3 -1 -3 -2 -3Weight

1 2 3 4 5 6 7 8
Position

18
Pair

Syncopation Syncopation

Syncopation
Index -2 – (-3) -1 – (-3) + = 3

Figure 5. A rhythm tree and syncopation index in
4/4 meter [6].

In order to calculate syncopation value with our
probabilistic model, we follow the Longuet-Higgins and
Lee’s definition of syncopation [2, 6]. They defined
metrical tree having weight values of zero or less to
calculate syncopation index (figure 5). The weights
describe how much the metrical positions contribute to
the measure’s rhythmic feeling. According to their
papers, syncopations occur when a rest (or tied note) is
preceded by a note of lesser weight, and the difference
in weights of rest and note means each syncopation
value. Thus the sum of all syncopation values is the
syncopation index for the rhythm. For example, in
Figure 5, the rhythm has two syncopations. The first
syncopation value is 1, and the second one is 2. So the
syncopation index for the rhythm equals to 3 (more
detailed algorithm can be found in [2]).

We use this concept to probabilistically predict
syncopation index of note sequences to be generated
from Markov chains. In our model, comparing onset
probabilities for each pair, we assign a rest at the

position which has less onset probability, and another
position is assigned by a note. For example, given the
onset probabilities in figure 4, when an initial event is an
eighth note, a note at onset position 2 and a rest at
position 3 are assigned. Thus, using the same calculation
method shown in figure 5, its syncopation index can be
predicted as 3.

As shown in this example, we can predict
probabilistic syncopation index with different initial
states, which means that syncopation indices can be
user’s input parameters in Markov chain-based
improvisation system.

4.2. Max/MSP External Object

The algorithm was implemented in one Max/MSP
external object named MC_OnsetProb. The object
receives a list of sets of the transition matrix of simple
Markov chain model, and it converts them to the
transition matrix for revised Markov chain model. It also
calculates the onset probabilities at each pulse and
syncopation index. The output of this external object is
a list of sets of onset probability, syncopation index, and
related initial state.

4.3. Real-time Improvisation System

The system overview of Markov chain-based
improvisation system is shown in Figure 6, which
consists of three modules, (1) Markov Chain Analysis,
(2) Syncopation Index Calculation, and (3) Melody
Generation.

MIDI Input
Melody

Rhythm
Model

Pitch
Model

Markov Chain Anlaysis
(First-order)

Pitch
Generation

Rhythm
Generation

Melody generation

Onset Probability
Calculation

Revised Markov
Chain Model

 Syncopation Index
Calculation

User Input:
Syncopation

Index

Syncopation
Index Set

MIDI Output
Melody

Quantization

Figure 6. System overview of improvisation
system

432  |  2013 ICMC idea  |  POSTERS 433  |  2013 ICMC idea  |  POSTERS

Firstly, a user inputs monophonic melody with an
external midi device. The rhythm of the melody is
quantized to eighth-note level and first-order Markov
chains for pitch and rhythm are constructed. Secondly,
the simple Markov rhythm model is converted into a
revised Markov chain model, and the onset probabilities
and syncopation index are calculated. Lastly, a user
selects one syncopation index among all possible
candidates of the syncopation indices which are derived
from the second module. The chosen syncopation index
determines the initial state in the Markov chain model.
After all these procedures, new melody can be played.
While music is playing, a user can change syncopation
index, which means that the amount of syncopation can
be controlled in real-time. When a user selects one of
syncopation indices, the changed rhythm starts from the
next measure. For the real-time controllable feature, we
made the restrictions: first event (note or rest) at onset
position 1 in every measure is always the initial state and
the last event should fit in the bar even if it is not
finished.

Figure 7 shows a screenshot of the Max/MSP patch.
This also consists of three modules same as Figure 6.
Users can select syncopation index by pressing bang
button while playing (A video excerpt of the system is
available at
http://www.bongjunkim.com/work/markov-chain).

Stop Recording
& Quantization

Markov Chain
Analysis

Syncopation Index
Calculation

Progress
Status

Syncopation
Index Display

Syncopation
Index Selection

Tempo
Selection

Improvisation
Start

Pitch
Display

Figure 7. The screenshot of improvisation system
built in Max/MSP patch.

5. CONCLUSIONS

This paper presented a probabilistic model for rhythms
in Markov chain-based note generation, and an
interactive improvisation system was built using
Max/MSP. In order to calculate the onset probabilities, a
revised Markov model was suggested and the
syncopation index in one measure was derived from the
onset probabilities at each metrical position. Our model
enables users to probabilistically control rhythmic
tension when a simple Markov chain generates melodic
sequences.

As future works, we need to evaluate our model
through users’ response to the rhythmic changes and
compare with other models. This paper also can be
extended for higher-order Markov chain model, and we

will continue our research on probabilistic rhythm
analysis for algorithmic composition and machine
improvisation.

6. REFERENCES

[1] Bischof, M., Conradi, B., Lachenmaier, P.,
Linde, K., Meier, M., Pötzl, P. and André, El.
“Xenakis: combining tangible interaction with
probability-based musical composition”,
Proceedings of the International Conference
on Tangible and embedded interaction, New
York, USA, 2008.

[2] Fitch, W. T. and Rosenfeld, A. J. “Perception
and Production of Syncopated Rhythms”,
Music Perception, 25(1): pp. 43-58, 2007.

[3] Gómez, F., Melvin, A., Rappaport, D. and
Toussaint, G. “Mathematical Measures of
Syncopation”, BRIDGES: Mathematical
Connections in Art, Music and Science, Banff,
Canada, 2005.

[4] Kitahara, T., Totani, N., Tokuami, R. and
Katayose, H. “BayesianBand: Jam Session
System based on Mutual Prediction by user and
System”, Proceedings of International
Conference on Entertainment Computing, Pairs,
France, 2009.

[5] Klinger, R. and Rudolph, G. “Automatic
Composition of Music with Methods of
Computational Intelligence”, WSEAS Trans.
Information Science and Application, pp. 508-
515, 2007.

[6] Longuet-Higgins, C. and Lee, C. S. “The
rhythmic interpretation of monophonic music”,
Music Perception, 1(4): pp. 424-441, 1984.

[7] Nierhaus, G. Algorithmic Composition:
Paradigms of Automated Music Generation.
Springer-Verlag, 2009.

[8] Pachet, F. and Roy, P. “Markov constraints:
steerable generation of Markov sequences”,
Constraints, 16(2): pp.148–172, 2011.

[9] Pachet, F., Roy, P. and Barbieri, G. “Finite-
length Markov processes with constraints”,
Proceedings of International Joint Conference
on Artificial Intelligence, Barcelona, Spain,
2011.

[10] Schulze, W. and Van der Merwe, B. “Music
generation with Markov models”, IEEE
Multimedia, vol. 18, no. 3, pp. 78-85, 2011.

[11] Sioros, G. and Guedes, C. “Automatic
Rhythmic Performance in Max/MSP: the
kin.rhythmicator”,Proceedings of International.
Conference on New Interfaces for Musical
Expression, Oslo, Norway, 2011.

A MUSIC TIMBRE SELF-TRAINING TOOL ON MOBILE
DEVICE USING VOLUME NORMALIZED SIMPLIFIED

SPECTRAL INFORMATION

Simon Lui
Singapore University of Technology and Design

20 Dover Drive, SUTD, Singapore, 138682

ABSTRACT

Most people learn music timbre control in the traditional
way of imitating audio sample, under the guidance of
professional music teacher, then follow by self-
practicing after class. Since music timbre is expressive
and complicated, it is not straightforward to learn to
control it. Spectrogram contains a lot of information
about audio, but it is too complicated to be understood in
real-time. We propose a music timbre self-training
method, which makes use of compact and easy-to-read
spectrum information as visual clue to assist the learning
process. We demonstrate our work on smartphone and
using human beatboxing timbre as an example.
Experiment shows that this work increase the
effectiveness of music timbre learning for both musician
and non-musician, by providing extra visual information
for them to follow during the learning process.

1. INTRODUCTION

Music performance is expressive. It involves the control
of pitch, tempo, dynamic, and music timbre. Music
timbre, also known as tone color, describes the quality,
richness, and texture of sound. Different musical
instrument has different timbre. Even though for the
same instrument, with the same pitch, tempo and
dynamic, the timbre can be different. For example,
different violin bowing technique produces different
timbre. There does not exist well-structured and
effective learning tool for music timbre. The main
reason is music timbre is hard to describe by words.
Self-learning by listening to music sample is the best
way to understand music timbre. In this work, we are
looking for reference and clue to assist this self-learning
process. Spectrogram contains rich information of
voice. For example, Zue [1] demonstrated how to read
English words by visualizing spectrogram. Spectrogram
should be useful for assisting beatboxing learning by
providing visual information. However, the information
in a spectrogram is hard to read and understand. We
propose to redesign and simplify the spectrogram,
which act as a visual clue for user to read in real-time to
support the music timbre self-training process.

2. BACKGROUND AND PREVIOUS WORK

There exists a lot of music learning tools. On the Mac
OSX platform, Garageband provides the learn to play

music tutorial [2]. User is guided by the video demo.
They can interact with it by following the input sequence
of either a set of guitar chord positions or piano
fingerings. However there is no sound analysis
component. It only teaches user on fingering. There are
many other music learning apps on the iOS smartphone
platform such as Piano man [3], Guitar lab [4], Karajan
[5], etc. However all of them are similar to Garageband
in that they only guide users to follow a certain fingering
sequences. One famous music self-learning app on the
smartphone platform is GA [6]. The app teaches user to
sing in a Bollywood style. It teaches basic singing
technique like listening, breathing, and pronunciation, by
a set of interactive exercises. However it is just similar
to learning music with a “virtual music teacher” in
which user learns music by imitation. There is no
instruction for the user to make gradual improvement.
There is an app called Do Re Mi Voice Training [7],
which is available on the iOS and Mac OSX platform. It
is interactive in the way that traces the user’s singing
pitch trend. User can tune their pitch to match with the
melody line. However it only works on pitch training.
There is no music timbre training. There is no music
educational tool that analyses the sound and provides
feedback for the users to try out and gradually improve
themselves. To learn music timbre, we need some guide
to help user to view and adjust their performances.

3. DESIGN PRINCIPLE AND
IMPLEMENTATION

There are a lot of features that affect the music timbre.
Aucouturier [8] proposed several timbre models, which
are all based on the Mel Frequency Cepstral Coefficients
(MFCC). Kapur [9] identified vocal music with several
features such as Root Mean Square energy, MFCC and
Linear Predictive Coefficient (LPC). Lemaitre et al. [10]
used several audio features to identify vocal imitation,
including fundamental frequency, spectral centroid, and
energy envelope. Zhang [11] recognized music timbre
with several spectral and harmonic information,
fundamental frequency, attack and decay time, etc.
These features can be classified into two main classes:
the time domain energy features class, and the frequency
domain spectral features class. There are other features
that can affect music timbre. Since we aim to design a
visual clue for user to follow, we only pick those
features that a user can directly relate to in controlling
their own physical action.

