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Another observation from the data and graphs is that test 
scores show lower achievement than projects in general.  
This is somewhat obvious because when a student writes 
a program, the system tells them pretty quickly when it 
is wrong.  Consider Loops: this was assessed early and 
was generally low but then again on the low on the final 
exam. Obviously students used loops throughout the 
semester but in a programming context students may 
have shifted being able to do it right the first time or 
spending a little more time debugging.  On the exam 
where they could not let the lack of a functioning 
program tell them they made a mistake they may have 
been at a disadvantage from an objective evaluation 
standpoint.  But, students who really "got it" did well on 
the tests as well. 

5. DISCUSSION 

The unique strength of our course is that we teach and 
provide digital arts students with tools they can use for 
serious projects and future work, but we also provide 
them knowledge and example code that demonstrates 
particular computer science and DSP concepts.  The 
example code is parsimonious (due to the nature of 
ChucK), and is heavily commented so the students feel 
free to re-use and modify it.  Each exercise and example 
the students learn, program, and modify demonstrates an 
important concept, algorithm, mechanism, etc. 

Finally, teaching our courses in ChucK, which is free 
and open-source, gives art students the promise that they 
can use these in the future without prohibitive personal 
cost. Unlike engineering students, art students cannot be 
assured they will have employers that can afford 
expensive professional versions of software such as 
MATLAB, Max/MSP/Jitter, MAYA, etc. ChucK has a 
growing base of users, academic and also in production 
coding (a number of popular iPhone/iPad Apps are 
written at least in part in ChucK).  

We have learned much, and plan to modify and assess 
our curriculum as we continue to offer the course(s) in 
the future.  The course will be offered in the future, and 
to a wider population within the art school.  The goal is 
to have all art majors take this course sequence, to offer 
the course to other institutions for adoption and/or 
modification, and to potentially offer a version of it 
online.  All course materials and other supplemental 
materials are available at http://www.chucku.org. 
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ABSTRACT 

Markov chain models have been widely used for 
algorithmic composition and machine improvisation. In 
this paper, we introduce a probabilistic prediction model 
of rhythmic characteristics of Markov chain-based note 
sequences. For this purpose, we propose an algorithm to 
generate a revised Markov chain model and calculate the 
onset probabilities of notes at each onset position in one 
measure. As an application of this algorithm, we present 
an interactive improvisation system which uses a 
customized syncopation index as an input parameter and 
allows the user to control the level of syncopation and 
rhythmic tension in real-time. 

1. INTRODUCTION 

Auto-generation of music with mathematical algorithms 
such as neural networks, genetic algorithms, generative 
grammars and cellular automata, has been researched for 
several decades. Markov chains are also widely used in 
algorithmic composition and machine improvisation 
system because it is computationally cheap to learn the 
style of existing music and imitate the music with simple 
probabilistic calculation [5, 7]. Markov chains imitate a 
style of sequence of musical events such as notes and 
chords with transition probabilities between events. This 
probability-based learning and creation enable us to 
generate more creative musical outcomes [1, 10]. 

Despite of the advantages of Markov chains, they are 
not suited for interactive control. Overcoming this 
drawback, Pachet et al. suggested methods to control the 
generation of event sequences from Markov chain 
models for interactive applications considering 
constraints for user inputs. But they focused on only 
pitch, not rhythmic factors [8, 9]. 

This paper addresses the issue of controlling rhythm 
of note sequences generated from a first-order Markov 
chain which is the simplest type. Our approach is to 
predict the onset probabilities of musical notes and to 
select the initial state of the Markov chains depending 
on the probabilities. As an application of the algorithm, 
we present an interactive improvisation system built in 
Max/MSP where users can control the amount of 
syncopation of the rhythm in real-time. 

2. RHYTHM GENERATION AND 
ANALYSIS WITH MARKOV MODELS  

Figure 1 illustrates an example of a simple first-order 
Markov chain for rhythm generation, which can be 
derived from the user’s input melodies or sample pieces. 
Each node represents the duration of a note, and 
transition probabilities between nodes show their mutual 
dependencies. For example, a quarter note is followed 
by an eighth note with the probability 0.5 and, in turn, an 
eighth note is followed by an eighth rest with the 
probability 0.3. The outgoing probabilities from each 
state must sum to 1. 
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Figure 1. An example of a first-order Markov 
chain for rhythm generation 

The Markov chain model is used not only to imitate a 
style of existing pieces and generate melodies, but also 
to calculate probabilities of future events using transition 
matrices, which means that we can predict the possibility 
of occurrence of the n th note from the initial note [4]. 
For example, if each state (or node) of a Markov chain 
denote pitch, we can calculate the probability that the 
pitch of the third note will be E or C. However, if it is a 
rhythm model involving the duration of notes shown in 
Figure 1, it is hard to predict the rhythmic characteristics 
per bar. This is because the onset position of each note 
is affected by the durations of their preceding notes. 
Figure 2 illustrates the problem. Depending on the 
combination of the first two events (either notes or rests) 
the third event is in a different position. With the simple 
Markov chain model in Figure 1, we can only calculate 
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the probability that the third event is an eighth note, not 
the probability that it occurs at a specific position. But 
we need the latter to predict rhythmic characteristics in 
one measure.  
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Figure 2. The onset positions of the third event 
vary with the durations of preceding events. 

3. THE ALGORITHM 

3.1. Revised Markov Chain Model 

In order to calculate the probability of each state at a 
specific position in a bar, the simple Markov chain 
above needs to be revised. Figure 3 illustrates the 
structure of a new Markov chain model modified from 
the original one in Figure 1. To generate this model, the 
number of “unit pulses” in one bar needs to be defined. 
Here, we divide one measure into 8 beat pulses and, 
assuming 4/4 meter, the duration of a unit pulse 
corresponds to an eighth note. Compared to Figure 1, 
nodes whose duration is longer than one unit pulse are 
divided into multiple nodes so that each state can take 
only the unit duration, an eighth note. 
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Figure 3. Revised Markov chain model (modified 
from Figure 1). 

Each state is denoted as (a, b): the first element a 
shows the type and duration of the event (e.g., Nd or Rd, 
where N: note, R: rest, and d: duration) and the second 
element b means the “counter” parameter ranging from 1 
to the duration of the event. For example, the dotted 
quarter note has three states, (N3, 1), (N3, 2), and (N3, 3). 
The transition probabilities to newly added nodes (gray-
colored in Figure 3) are set to 1 because these events 
always occur after the first state of each event. 

3.2. Onset Probability 

The purpose of the revised Markov chain model is to 
derive state probabilities of each onset position in one 
measure from a simple Markov chain model. The state 
probabilities π(k) are calculated using equation (1). 

  T πkπ k 1)0()(                       (1) 

In the equation, k denotes time step indicating onset 
positions from 1 to 8 and π(0) means initial state. T is a 
transition matrix modified from the transition matrix of 
simple Markov chains in Figure 1 by a simple procedure. 
Firstly, the new transition matrix is initialized as a zero-
matrix. If the size of previous transition matrix is (N × 
N), the size of revised transition matrix is (d1 + ···+ dN) 
×(d1 + ··· + dN), where dN is the duration of note or rest 
N. Their transition probabilities, S’ are derived using 
equation (2) and (3), where S denotes transition 
probabilities of the simple Markov model. 

1111' )1,(),,(  ababa d,...,b N,,...,a for  S     (2) 
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Now, we can calculate onset probabilities at each 
position in one measure. The probability that note a 
occurs at position k can be calculated by following 
equation (4). 

resta for  kπkp aa  1,)()(                 (4) 

Finally, the onset probability at position k, Ponset(k) is 
derived from equation (5). 
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where t is the total number of notes. 
Figure 4 is onset probability distribution which allows 

us to predict how the rhythm will be generated from the 
Markov chain in Figure 1. We also know that the 
probabilities change depending on the initial events. 
 

4. APPLICATION 

As an application of the algorithm, we developed an 
interactive improvisation system where users can control 
the amount of syncopation of the rhythm in real-time. 
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Figure 4. Onset probability distribution in one measure 
with different initial states. 

4.1. Syncopation Index 

Syncopation is one of the rhythmic characteristics which 
produce rhythmic tension. Many researchers have 
explored the method of measures and perception of 
syncopation [3], and it has been used as user’s input 
parameter of interactive music system [11]. 
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Figure 5. A rhythm tree and syncopation index in 
4/4 meter [6]. 

In order to calculate syncopation value with our 
probabilistic model, we follow the Longuet-Higgins and 
Lee’s definition of syncopation [2, 6]. They defined 
metrical tree having weight values of zero or less to 
calculate syncopation index (figure 5). The weights 
describe how much the metrical positions contribute to 
the measure’s rhythmic feeling. According to their 
papers, syncopations occur when a rest (or tied note) is 
preceded by a note of lesser weight, and the difference 
in weights of rest and note means each syncopation 
value. Thus the sum of all syncopation values is the 
syncopation index for the rhythm. For example, in 
Figure 5, the rhythm has two syncopations. The first 
syncopation value is 1, and the second one is 2. So the 
syncopation index for the rhythm equals to 3 (more 
detailed algorithm can be found in [2]). 

We use this concept to probabilistically predict 
syncopation index of note sequences to be generated 
from Markov chains. In our model, comparing onset 
probabilities for each pair, we assign a rest at the 

position which has less onset probability, and another 
position is assigned by a note. For example, given the 
onset probabilities in figure 4, when an initial event is an 
eighth note, a note at onset position 2 and a rest at 
position 3 are assigned. Thus, using the same calculation 
method shown in figure 5, its syncopation index can be 
predicted as 3.  

As shown in this example, we can predict 
probabilistic syncopation index with different initial 
states, which means that syncopation indices can be 
user’s input parameters in Markov chain-based 
improvisation system.  

4.2. Max/MSP External Object 

The algorithm was implemented in one Max/MSP 
external object named MC_OnsetProb. The object 
receives a list of sets of the transition matrix of simple 
Markov chain model, and it converts them to the 
transition matrix for revised Markov chain model. It also 
calculates the onset probabilities at each pulse and 
syncopation index.  The output of this external object is 
a list of sets of onset probability, syncopation index, and 
related initial state. 

4.3. Real-time Improvisation System 

The system overview of Markov chain-based 
improvisation system is shown in Figure 6, which 
consists of three modules, (1) Markov Chain Analysis, 
(2) Syncopation Index Calculation, and (3) Melody 
Generation. 
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Figure 6. System overview of improvisation 
system 
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the probability that the third event is an eighth note, not 
the probability that it occurs at a specific position. But 
we need the latter to predict rhythmic characteristics in 
one measure.  
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vary with the durations of preceding events. 

3. THE ALGORITHM 

3.1. Revised Markov Chain Model 

In order to calculate the probability of each state at a 
specific position in a bar, the simple Markov chain 
above needs to be revised. Figure 3 illustrates the 
structure of a new Markov chain model modified from 
the original one in Figure 1. To generate this model, the 
number of “unit pulses” in one bar needs to be defined. 
Here, we divide one measure into 8 beat pulses and, 
assuming 4/4 meter, the duration of a unit pulse 
corresponds to an eighth note. Compared to Figure 1, 
nodes whose duration is longer than one unit pulse are 
divided into multiple nodes so that each state can take 
only the unit duration, an eighth note. 
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Figure 3. Revised Markov chain model (modified 
from Figure 1). 

Each state is denoted as (a, b): the first element a 
shows the type and duration of the event (e.g., Nd or Rd, 
where N: note, R: rest, and d: duration) and the second 
element b means the “counter” parameter ranging from 1 
to the duration of the event. For example, the dotted 
quarter note has three states, (N3, 1), (N3, 2), and (N3, 3). 
The transition probabilities to newly added nodes (gray-
colored in Figure 3) are set to 1 because these events 
always occur after the first state of each event. 

3.2. Onset Probability 

The purpose of the revised Markov chain model is to 
derive state probabilities of each onset position in one 
measure from a simple Markov chain model. The state 
probabilities π(k) are calculated using equation (1). 
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In the equation, k denotes time step indicating onset 
positions from 1 to 8 and π(0) means initial state. T is a 
transition matrix modified from the transition matrix of 
simple Markov chains in Figure 1 by a simple procedure. 
Firstly, the new transition matrix is initialized as a zero-
matrix. If the size of previous transition matrix is (N × 
N), the size of revised transition matrix is (d1 + ···+ dN) 
×(d1 + ··· + dN), where dN is the duration of note or rest 
N. Their transition probabilities, S’ are derived using 
equation (2) and (3), where S denotes transition 
probabilities of the simple Markov model. 
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position in one measure. The probability that note a 
occurs at position k can be calculated by following 
equation (4). 
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where t is the total number of notes. 
Figure 4 is onset probability distribution which allows 

us to predict how the rhythm will be generated from the 
Markov chain in Figure 1. We also know that the 
probabilities change depending on the initial events. 
 

4. APPLICATION 

As an application of the algorithm, we developed an 
interactive improvisation system where users can control 
the amount of syncopation of the rhythm in real-time. 
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4.1. Syncopation Index 

Syncopation is one of the rhythmic characteristics which 
produce rhythmic tension. Many researchers have 
explored the method of measures and perception of 
syncopation [3], and it has been used as user’s input 
parameter of interactive music system [11]. 
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Figure 5. A rhythm tree and syncopation index in 
4/4 meter [6]. 

In order to calculate syncopation value with our 
probabilistic model, we follow the Longuet-Higgins and 
Lee’s definition of syncopation [2, 6]. They defined 
metrical tree having weight values of zero or less to 
calculate syncopation index (figure 5). The weights 
describe how much the metrical positions contribute to 
the measure’s rhythmic feeling. According to their 
papers, syncopations occur when a rest (or tied note) is 
preceded by a note of lesser weight, and the difference 
in weights of rest and note means each syncopation 
value. Thus the sum of all syncopation values is the 
syncopation index for the rhythm. For example, in 
Figure 5, the rhythm has two syncopations. The first 
syncopation value is 1, and the second one is 2. So the 
syncopation index for the rhythm equals to 3 (more 
detailed algorithm can be found in [2]). 

We use this concept to probabilistically predict 
syncopation index of note sequences to be generated 
from Markov chains. In our model, comparing onset 
probabilities for each pair, we assign a rest at the 

position which has less onset probability, and another 
position is assigned by a note. For example, given the 
onset probabilities in figure 4, when an initial event is an 
eighth note, a note at onset position 2 and a rest at 
position 3 are assigned. Thus, using the same calculation 
method shown in figure 5, its syncopation index can be 
predicted as 3.  

As shown in this example, we can predict 
probabilistic syncopation index with different initial 
states, which means that syncopation indices can be 
user’s input parameters in Markov chain-based 
improvisation system.  

4.2. Max/MSP External Object 

The algorithm was implemented in one Max/MSP 
external object named MC_OnsetProb. The object 
receives a list of sets of the transition matrix of simple 
Markov chain model, and it converts them to the 
transition matrix for revised Markov chain model. It also 
calculates the onset probabilities at each pulse and 
syncopation index.  The output of this external object is 
a list of sets of onset probability, syncopation index, and 
related initial state. 

4.3. Real-time Improvisation System 

The system overview of Markov chain-based 
improvisation system is shown in Figure 6, which 
consists of three modules, (1) Markov Chain Analysis, 
(2) Syncopation Index Calculation, and (3) Melody 
Generation. 
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Figure 6. System overview of improvisation 
system 
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Firstly, a user inputs monophonic melody with an 
external midi device. The rhythm of the melody is 
quantized to eighth-note level and first-order Markov 
chains for pitch and rhythm are constructed. Secondly, 
the simple Markov rhythm model is converted into a 
revised Markov chain model, and the onset probabilities 
and syncopation index are calculated. Lastly, a user 
selects one syncopation index among all possible 
candidates of the syncopation indices which are derived 
from the second module. The chosen syncopation index 
determines the initial state in the Markov chain model. 
After all these procedures, new melody can be played. 
While music is playing, a user can change syncopation 
index, which means that the amount of syncopation can 
be controlled in real-time. When a user selects one of 
syncopation indices, the changed rhythm starts from the 
next measure.  For the real-time controllable feature, we 
made the restrictions: first event (note or rest) at onset 
position 1 in every measure is always the initial state and 
the last event should fit in the bar even if it is not 
finished. 

Figure 7 shows a screenshot of the Max/MSP patch. 
This also consists of three modules same as Figure 6. 
Users can select syncopation index by pressing bang 
button while playing (A video excerpt of the system is 
available at  
http://www.bongjunkim.com/work/markov-chain ). 
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Figure 7. The screenshot of improvisation system 
built in Max/MSP patch. 

5. CONCLUSIONS 

This paper presented a probabilistic model for rhythms 
in Markov chain-based note generation, and an 
interactive improvisation system was built using 
Max/MSP. In order to calculate the onset probabilities, a 
revised Markov model was suggested and the 
syncopation index in one measure was derived from the 
onset probabilities at each metrical position. Our model 
enables users to probabilistically control rhythmic 
tension when a simple Markov chain generates melodic 
sequences. 

As future works, we need to evaluate our model 
through users’ response to the rhythmic changes and 
compare with other models.  This paper also can be 
extended for higher-order Markov chain model, and we 

will continue our research on probabilistic rhythm 
analysis for algorithmic composition and machine 
improvisation.  
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ABSTRACT 

Most people learn music timbre control in the traditional 
way of imitating audio sample, under the guidance of 
professional music teacher, then follow by self-
practicing after class. Since music timbre is expressive 
and complicated, it is not straightforward to learn to 
control it. Spectrogram contains a lot of information 
about audio, but it is too complicated to be understood in 
real-time. We propose a music timbre self-training 
method, which makes use of compact and easy-to-read 
spectrum information as visual clue to assist the learning 
process. We demonstrate our work on smartphone and 
using human beatboxing timbre as an example. 
Experiment shows that this work increase the 
effectiveness of music timbre learning for both musician 
and non-musician, by providing extra visual information 
for them to follow during the learning process.  

1. INTRODUCTION 

Music performance is expressive. It involves the control 
of pitch, tempo, dynamic, and music timbre. Music 
timbre, also known as tone color, describes the quality, 
richness, and texture of sound. Different musical 
instrument has different timbre. Even though for the 
same instrument, with the same pitch, tempo and 
dynamic, the timbre can be different. For example, 
different violin bowing technique produces different 
timbre. There does not exist well-structured and 
effective learning tool for music timbre. The main 
reason is music timbre is hard to describe by words. 
Self-learning by listening to music sample is the best 
way to understand music timbre. In this work, we are 
looking for reference and clue to assist this self-learning 
process. Spectrogram contains rich information of 
voice. For example, Zue [1] demonstrated how to read 
English words by visualizing spectrogram. Spectrogram 
should be useful for assisting beatboxing learning by 
providing visual information. However, the information 
in a spectrogram is hard to read and understand. We 
propose to redesign and simplify the spectrogram, 
which act as a visual clue for user to read in real-time to 
support the music timbre self-training process.  

2. BACKGROUND AND PREVIOUS WORK 

There exists a lot of music learning tools. On the Mac 
OSX platform, Garageband provides the learn to play 

music tutorial [2]. User is guided by the video demo. 
They can interact with it by following the input sequence 
of either a set of guitar chord positions or piano 
fingerings. However there is no sound analysis 
component. It only teaches user on fingering. There are 
many other music learning apps on the iOS smartphone 
platform such as Piano man [3], Guitar lab [4], Karajan 
[5], etc. However all of them are similar to Garageband 
in that they only guide users to follow a certain fingering 
sequences. One famous music self-learning app on the 
smartphone platform is GA [6].  The app teaches user to 
sing in a Bollywood style. It teaches basic singing 
technique like listening, breathing, and pronunciation, by 
a set of interactive exercises. However it is just similar 
to learning music with a “virtual music teacher” in 
which user learns music by imitation. There is no 
instruction for the user to make gradual improvement. 
There is an app called Do Re Mi Voice Training [7], 
which is available on the iOS and Mac OSX platform. It 
is interactive in the way that traces the user’s singing 
pitch trend. User can tune their pitch to match with the 
melody line. However it only works on pitch training. 
There is no music timbre training. There is no music 
educational tool that analyses the sound and provides 
feedback for the users to try out and gradually improve 
themselves. To learn music timbre, we need some guide 
to help user to view and adjust their performances. 

3. DESIGN PRINCIPLE AND 
IMPLEMENTATION 

There are a lot of features that affect the music timbre. 
Aucouturier [8] proposed several timbre models, which 
are all based on the Mel Frequency Cepstral Coefficients 
(MFCC). Kapur [9] identified vocal music with several 
features such as Root Mean Square energy, MFCC and 
Linear Predictive Coefficient (LPC). Lemaitre et al. [10] 
used several audio features to identify vocal imitation, 
including fundamental frequency, spectral centroid, and 
energy envelope. Zhang [11] recognized music timbre 
with several spectral and harmonic information, 
fundamental frequency, attack and decay time, etc. 
These features can be classified into two main classes: 
the time domain energy features class, and the frequency 
domain spectral features class. There are other features 
that can affect music timbre. Since we aim to design a 
visual clue for user to follow, we only pick those 
features that a user can directly relate to in controlling 
their own physical action.  




